Phases of Design

Customer
Understand the Design Process

Specification Development
Specification of Information

Conceptual Design
Specification of a Principle
Functional Decomposition
Generate Concepts
Concept Evaluation
Concept Selection
Preliminary Design/Embodiment

Detail Design

Specification of Production
Process Planning

Manufacture
Who is the Customer for this System?

- airlines
- passengers
- flight attendants
- pilots
- ground crew
- TSA
- air traffic control
- FAA
- and many others....
Customer needs are found by asking, observing, and testing

- Focus Groups
- One-on-One Interviews
- Ethnography (culture)
- Empathic design (feelings)
- Many others...

https://www.coolcamping.co.uk/features/35-the-rise-rise-of-inflatable-tents

Three Types of Quality/Features

Basic:
• Expected or assumed (threshold attributes)
• Typical of “invisible” products
• Functions of products

Performance:
• One dimensional
• Most market research

Excitement:
• Pleasant surprises or customer delights
• Unexpected
Customer needs are specific, positive, and solution-neutral

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Customer Statement</th>
<th>Need Statement</th>
<th>Need Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Not How</td>
<td>“Why don’t they put a hook at the end of the outlet hose?”</td>
<td>The outlet hose has a hook to connect to water containers.</td>
<td>The WF easily transfers water into a variety of different containers</td>
</tr>
<tr>
<td>Specificity</td>
<td>“I often times drop the water filter on rocks.”</td>
<td>The WF is rugged.</td>
<td>The WF operates normally after repeated dropping.</td>
</tr>
<tr>
<td>Positive Not Negative</td>
<td>“the WF is difficult to hold.”</td>
<td>The WF is not difficult to hold.</td>
<td>The WF is easy to hold</td>
</tr>
<tr>
<td>Product Attribute</td>
<td>“I need to attach a virus filter to the WF.”</td>
<td>A virus filter can be attached to the WF</td>
<td>WF accommodates a virus filter</td>
</tr>
<tr>
<td>Avoid “Must” & “Should”</td>
<td>“The water should taste good.”</td>
<td>The WF should deliver good tasting water</td>
<td>The WF delivers good tasting water</td>
</tr>
</tbody>
</table>

8
Customer Needs (e.g., Page Turner)

<table>
<thead>
<tr>
<th>Question</th>
<th>Customer Statement</th>
<th>Interpreted Need</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical uses</td>
<td>• Independent use by student</td>
<td>• Operable by person with disabilities</td>
<td>(must) 4</td>
</tr>
<tr>
<td>Likes</td>
<td>• Portable, Mobile</td>
<td>• Portable</td>
<td>(good) 3</td>
</tr>
<tr>
<td></td>
<td>• Auditory sound provided when page is turned</td>
<td>• Signals when performing desired actions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adjustable stand for different book sizes</td>
<td>• Adjusts to different book sizes</td>
<td></td>
</tr>
<tr>
<td>Dislikes</td>
<td>• Used so much that we wore it out</td>
<td>• Lightweight</td>
<td>(good) 3</td>
</tr>
<tr>
<td></td>
<td>• Heavy</td>
<td>• Repairable by staff</td>
<td>(good) 3</td>
</tr>
<tr>
<td></td>
<td>• Need consistent page turning</td>
<td>• Easily replaceable parts</td>
<td>(must) 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Predictable page turning</td>
<td>(must) 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low failure rate</td>
<td>(must) 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Long mean time between failures</td>
<td>(should) 2</td>
</tr>
<tr>
<td>Suggested</td>
<td>• Built in delay for multiple button pushes</td>
<td>• Turns variety of page types</td>
<td>(should) 2</td>
</tr>
<tr>
<td>Improvements</td>
<td>• Be able to turn newspaper pages</td>
<td>• Accounts for accidental, repeat button pushes</td>
<td>(good) 3</td>
</tr>
<tr>
<td></td>
<td>• Be able to turn scrapbook pages</td>
<td>• Operable by multiple persons</td>
<td>(must) 4</td>
</tr>
<tr>
<td></td>
<td>• Multiple students can share</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From Customer Needs to Specifications

Engineering Requirements and Specifications Translate Voice of the Customer to Technology

TABLET DEVICE COMPARISON

<table>
<thead>
<tr>
<th>Model</th>
<th>Display Size (inches)</th>
<th>Weight (g)</th>
<th>Resolution (pPI)</th>
<th>Camera</th>
<th>Connectivity</th>
<th>Battery Life (h)</th>
<th>Processor</th>
<th>RAM</th>
<th>Storage</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung Galaxy Tab 3</td>
<td>10.1 diagonal</td>
<td>600g</td>
<td>1366x768</td>
<td>8MP rear</td>
<td>Bluetooth: 2.1, Wi-Fi</td>
<td>9.5</td>
<td>Snapdragon 802</td>
<td>2GB</td>
<td>16GB or 32GB</td>
<td>Android 4.4</td>
</tr>
<tr>
<td>Motorola XOOM</td>
<td>10.1 diagonal</td>
<td>730g</td>
<td>1280x800</td>
<td>5MP</td>
<td>Bluetooth: 3.0, Wi-Fi</td>
<td>10</td>
<td>Tegra 3</td>
<td>2GB</td>
<td>32GB</td>
<td>Android 3.2</td>
</tr>
<tr>
<td>BlackBerry Playbook</td>
<td>7-inch diagonal</td>
<td>400g</td>
<td>1366x768</td>
<td>5MP</td>
<td>Bluetooth: 3.0, Wi-Fi</td>
<td>9.5</td>
<td>Snapdragon 802</td>
<td>2GB</td>
<td>16GB or 32GB</td>
<td>BlackBerry OS 7.0</td>
</tr>
<tr>
<td>Apple iPad 2</td>
<td>7.7-inch diagonal</td>
<td>661g</td>
<td>Retina</td>
<td>8MP</td>
<td>Bluetooth: 3.0, Wi-Fi</td>
<td>9.5</td>
<td>A5</td>
<td>1GB</td>
<td>16GB, 32GB, 64GB</td>
<td>iOS 4.3</td>
</tr>
<tr>
<td>Samsung Galaxy Tab 2</td>
<td>7.0 diagonal</td>
<td>385g</td>
<td>1280x800</td>
<td>5MP</td>
<td>Bluetooth: 2.1, Wi-Fi</td>
<td>10</td>
<td>Exynos 5250</td>
<td>2GB</td>
<td>16GB, 32GB, 64GB</td>
<td>Android 4.0</td>
</tr>
</tbody>
</table>

CREDIT TO: WIKIPEDIA
Quality Function Deployment (QFD)

QFD is a design planning tool:
• for translating customer needs into appropriate product development requirements
• that identifies the significant item(s) on which to focus time, product improvement efforts and other resources

QFD enables:
• the identification of important issues and items
• the identification of trade-offs and synergies
House of Quality (HOQ)

- Design tool for coordinating design efforts towards goods customers WANT
- House of quality (HOQ) is part of QFD
- Focus on quality and customer needs across the design process and across corporate boundaries
- Guide design priorities based on customer needs and competitive benchmarking
- Over 70% of US companies use QFD (Ford, Xerox, Toyota …)
Effect of QFD on Performance

- Changes = Money
- Earlier Changes = Less Money Spent

Customer desires (qualitative)

House of Quality (HOQ)

HOQ Translates Needs to Specifications

Customer Needs

HOQ

Engineering Requirements and Specifications

Product performance (quantitative)

Specification is a:

Metric with Target Value & units

- mass < 0.1 kg
- volume < 250 cm³
House of Quality (HOQ) components

- Customer needs/perceptions
- Engineering metrics/requirements
 - Targets
 - Direction of improvement
- Conflict/synergies
- Relationship matrix
- Correlation matrix
House of Quality (HOQ) components

Customer needs/perceptions:
• These are the ‘whats’
• Assigned numerical importance (e.g., 1 to 10)

Engineering metrics/requirements:
• These are the ‘hows’
• Determine most important ones using Relationships
• Determine synergies/conflicts with Correlations

Relationship matrix (RM):
• Maps relationship between ‘hows’ and ‘whats’
• Quantitative relationship levels (e.g., 1, 3 and 9)

Correlation matrix (CM):
• Maps correlation between engineering requirements
• Strong positive, positive, negative, strong negative
Relationship Matrix in HOQ

Direction of Improvement	▲	▼	▼	▼	▼	▲	▼	▼	▼	▼	▼	▼	▼	▼	
Engineering Requirements															
Customer Requirements															
(Explicit and Implicit)															
operable by person with disabilities	○	●													
Portable/Mobile	○	○													
Signals when performing desired actions	●	●	●												
lightweight	●														
repairable by staff		▼	●	●	○										
easily replaceable parts			●												
predictable page turning														○	●
low failure rate													■	●	
safely handles variety of reading materials													●	●	

Notes:
- ▲: Increase
- ▼: Decrease
- ○: No change
- ▼: Consider
- ●: Strongly agree
- ▼: Disagree
- ○: Neutral
- ▼: Strongly disagree
- ◇: Very strong agreement

Improvements:
- **Tolerance of user-initiated motions**
- **Grip force required of operator**
- **Total mass**
- **Carrying dimensions**
- **Auditory volume of visual signals**
- **Match signals with user-generated actions**
- **Intensity of visual signals**
- **Number of assembly and disassembly operations**
- **Error in aligning parts**
- **# Specialty components**
- **# Tools needed to repair**
- **Grainularity of page turning control**
- **Error rate in page turning**
- **Rate of wear of components**
- **Adjustable range of dimensions**
- **Force on the page**

What:
- What features are being assessed?

How:
- How are the features improved?

Georgia Tech

Creating the Next
Correlation Matrix in HOQ

<table>
<thead>
<tr>
<th>Engineering requirements</th>
<th>Column #</th>
</tr>
</thead>
<tbody>
<tr>
<td>tolerance of user-initiated motions</td>
<td>1</td>
</tr>
<tr>
<td>grip force required of operator</td>
<td>2</td>
</tr>
<tr>
<td>total mass</td>
<td>3</td>
</tr>
<tr>
<td>carrying dimensions</td>
<td>4</td>
</tr>
<tr>
<td>auditory volume of signals</td>
<td>5</td>
</tr>
<tr>
<td>match signals with user generated actions</td>
<td>6</td>
</tr>
<tr>
<td>intensity of visual signals</td>
<td>7</td>
</tr>
<tr>
<td>number of assembly and disassembly orientations</td>
<td>8</td>
</tr>
<tr>
<td>error in aligning parts</td>
<td>9</td>
</tr>
<tr>
<td># specialty components</td>
<td>10</td>
</tr>
<tr>
<td># tools needed to repair</td>
<td>11</td>
</tr>
<tr>
<td>granularity of page turning control</td>
<td>12</td>
</tr>
<tr>
<td>error rate in page turning</td>
<td>13</td>
</tr>
<tr>
<td>rate of wear of components</td>
<td>14</td>
</tr>
<tr>
<td>adjustable range of dimensions</td>
<td>15</td>
</tr>
<tr>
<td>force on the page</td>
<td>16</td>
</tr>
</tbody>
</table>

Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>tolerance of user-initiated motions</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>grip force required of operator</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>total mass</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>carrying dimensions</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>auditory volume of signals</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>match signals with user generated actions</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>intensity of visual signals</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>number of assembly and disassembly orientations</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>error in aligning parts</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td># specialty components</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td># tools needed to repair</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>granularity of page turning control</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>error rate in page turning</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>rate of wear of components</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>adjustable range of dimensions</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>force on the page</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
How do you prefer your coffee???
Determine how specific values for engineering requirements influence satisfaction of customer needs

- Scientific studies
- Survey tests
- Focus groups
- Refer to standards organizations (NIOSH, OSHA, NIST, ASTM, etc)

Coffee grind example

Figure 13.9 Coffee quality chart. (Adapted from American Coffee Brewing Institute and reproduced by courtesy of Van Nostrand Reinhold.)
HOQ Example (e.g., Coffee)

What
- Hot
- Taste/flavor
- Smell
- Stimulating
- Aesthetics
- Color
- Cost
- Grind
- Not toxic

How
- Serving temperature (Hot)
- Taste jury (Taste)
- Smell jury (Smell)
- Measure caffeine level (Stimulating)
- Jury (Aesthetics)
- Color standard (Color)
- Price (Cost)
- Filter & weight (Grind)
- Lethal Dose 50% (Median, LD 50)
Matrix Weights

- Strong, $\bigcirc = 9$
- Medium, $\bigcirc = 3$
- Weak, $\Delta = 1$

- The 181 from column 1 comes from:
 \[(8)(9) + (6)(3) + (9)(9) + (10)(1) = 181\]
- The sum of the Absolute Importance row is:
 \[181 + 132 + 54 + 99 + 18 + 108 + 90 = 682\]
- The 0.27 in the first column of the Relative Importance row comes from:
 \[\frac{181}{682} = 0.2654 \approx 0.27\]
Analyzing and Diagnosing the HOQ

Look for:
• Blank rows – unaddressed customer need
• Blank columns – unimportant engineering requirement
• Communication opportunities
• Sales Points – competitors strengths/features
• Resolve or prioritize negative correlations
• Final correct targets
• Determining planned quality
• What design requirements to be deployed to Phase II (Parts Deployment)
Summary – QFD/HOQ

Customer requirements
• Rank based on customer priority

Engineering requirements
• Must be measurable (e.g., engineering units), have improvement direction and a target value
• Rate relationship to customer requirements
• Relate tradeoffs with other engineering reqs.
• Determine most important ones using calculation

Describing this figure in text
• Describe chart’s contents, not what the chart is itself!
• What is important for each set of data?
• Use numerical information from figure

See Ch. 2 in book for detail, templates online