ME – 2110
Creative Decisions and Design

Thomas R. Kurfess, Ph.D., P.E.
HUSCO/Ramirez Distinguished Chair in Fluid Power and Motion Control
Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia USA
ME 2110 - Creative Decisions & Design

- Studio Instructors:
 - Dr. M. Dinar
 - Dr. J. Donnell
 - Ms. K. Mehaffey
 - Dr. R. Moore
 - Dr. H. Rashidi
 - Dr. C. Saldana
 - Dr. R. Simmons
 - Dr. J. Streator
 - Dr. C. Telenko
 - Dr. C. Ume

- Lecture
 - M, W, 3:00 – 3:50 PM, Clough 152

- Studio
 - MRDC 2101 (Studio Classroom)
 - MRDC 2102 (Design Studio Shop)
 - Various Times

- Web site
 - http://2110.me.gatech.edu/
Course Objectives

 To learn
– fundamental procedures for solving engineering design problems
– the essential details of
 ▪ analyzing, synthesizing, and implementing design solutions
– with
 ▪ flexibility, adaptability, and creativity
– the techniques which allow an engineer to tackle new, unsolved, open-ended problems
– by doing through team and individual projects and assignments.
Reality Check (1)

- This course is about
 - understanding alternatives
 - problem solving
 - organization
 - writing
 - presenting
 - getting a taste of the real world

- Professionalism
 - projects
 - reports
 - attendance.
Reality Check (2)

- **Do’s**
 - follow instructions
 - be in class on time
 - be in studio on time
 - pay attention
 - use the tools that are presented
 - read the book
 - give professional presentations
 - act professionally
 - follow procedures (safety)
 - clean-up in studio
 - report damaged equipment

- **Don’t’s**
 - miss class
 - turn in hand written reports
 - give hand written presentations
 - close your minds to the alternatives
 - sleep in class
 - bring food into studio
 - leave a mess in studio.
Your Grade

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio Preparedness</td>
<td>10%</td>
</tr>
<tr>
<td>Homework</td>
<td>15%</td>
</tr>
<tr>
<td>Class Participation</td>
<td>5%</td>
</tr>
<tr>
<td>Structure Lab</td>
<td>5%</td>
</tr>
<tr>
<td>Introductory Project</td>
<td>10%</td>
</tr>
<tr>
<td>Major Project</td>
<td>55%</td>
</tr>
<tr>
<td>Planning Report and Presentation</td>
<td>(5%)</td>
</tr>
<tr>
<td>Evaluation Report and Presentation</td>
<td>(5%)</td>
</tr>
<tr>
<td>Machine Performance</td>
<td>(15%)</td>
</tr>
<tr>
<td>Presentation to Judges</td>
<td>(5%)</td>
</tr>
<tr>
<td>Final Oral Presentation</td>
<td>(10%)</td>
</tr>
<tr>
<td>Final Report</td>
<td>(15%)</td>
</tr>
</tbody>
</table>

Give at least one oral presentation \(P/F \)
Electronics, machining, and pneumatics training \(P/F \)
Attendance

- You must attend all studios
 - attendance will be taken
 - missing a studio results in a 0 for that studio grade
 - missing a studio assignment results in a letter grade reduction

- You must attend all lectures
 - attendance will be taken at 3:00 PM
 - being late (arriving between 3:00 and 3:10) is 0.5 of a missing lectures
 - we will be using a seating chart
 - there are 20 lectures
 - missing lectures (rounded down) will result in a final grade penalty
 - 2-3 missed lectures = 1 letter grade reduction
 - 4-5 missed lectures = 2 letter grade reduction
 - 6-7 missed lectures = 3 letter grade reduction
 - 8-9 missed lectures = 4 letter grade reduction.
Studio – Be Prepared

- Review appropriate lecture material
- Review appropriate studio material
- Engage in studio
- Your studio instructor is grading you
- Studio Preparedness = 10% of your grade
- Class Participation = 5% of your grade
Science and Engineering

- Scientific Method
 - Theory corrected by experiment.

- Engineering Method
 - Ordered sequence describing the morphology of engineering design
 - Ordered sequence in descriptions of engineering problem solving.
 - Application of scientific principles to solve problems.
 - Incorporates the use of
 - engineering heuristics
 - heuristic reasoning
 - within the context of a
 - logical, ordered, and systematic procedure
 - plan for solving engineering problems effectively and efficiently.
Engineering

- Engineering Method
 - Strategy for causing the best change in a poorly understood or uncertain situation with the available resources and using heuristics
 - (Heuristics are anything that provides a plausible aid or direction in the solution of a problem, but is, in the final analysis, unjustified, incapable of justification and fallible; a.k.a.; engineering concept, rule of thumb, safety factors, orders of magnitude)

- Engineering is the process of manipulating nature to benefit society
 - Manipulating is decision making, not problem solving.
Characteristics of Design

- Multi-stage - hierarchical decomposition
- Large quantities of data - modularized
- Support design tools - analysis, optimization, simulation, etc. - in various design phases
- Uncertain design path
- Alternatives, revisions, versions
- Iterative and cyclic
- Teamwork - interactions between designers
- Multidisciplinary
- Dynamic.
Questions to Ask When Designing

- Where can I sell my product?
 - What products do my customers need?

- How can I improve my product?
 - What customer needs are not being met?

- When will my product become obsolete or inappropriate?
 - How are changes in technology affecting the marketplace?
Critical Information

- Studios (labs) are being held this week
 - Read the studio handout posted on the ME 2110 web site
- Do not miss your studio section
- Competition date 9 November 5 PM
- Final reports / presentations the week of 12 November
- Thanksgiving, 22 November
Some Advice

- Understand the world
- Get to know your TA and instructor
- Know where you are going
- Learn your material, it is valuable ($$$)
- Learn to tell your story, this course will land you a job
- You learn more from failure than from success
 - Fail often
 - Understand your failure mode
- Prototypes
 - Build
 - Run
 - Fatigue