ME – 2110 Creative Decisions and Design

Thomas R. Kurfess, Ph.D., P.E.

HUSCO/Ramirez Distinguished Chair in Fluid Power and Motion Control
Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia USA

ME 2110 - Creative Decisions & Design

Studio Instructors:

- Dr. M. Dinar
- Dr. J. Donnell
- Ms. K. Mehaffey
- Dr. R. Moore
- Dr. H. Rashidi
- Dr. C. Saldana
- Dr. R. Simmons
- Dr. J. Streator
- Dr. C. Telenko
- Dr. C. Ume

Lecture

- M, W, 3:00 3:50 PM, Clough 152
- Studio
 - MRDC 2101 (Studio Classroom)
 - MRDC 2102 (Design Studio Shop)
 - Various Times

Web site

- http://2110.me.gatech.edu/

Course Objectives

- ❖ To learn
 - fundamental procedures for solving engineering design problems
 - the essential details of
 - analyzing, synthesizing, and implementing design solutions
 - with
 - flexibility, adaptability, and creativity
 - the techniques which allow an engineer to tackle new, unsolved, open-ended problems
 - by doing through team and individual projects and assignments.

Georgia Tech

Reality Check (1)

- This course is about
 - understanding alternatives
 - problem solving
 - organization
 - writing
 - presenting
 - getting a taste of the real world
- ❖ Professionalism
 - projects
 - reports
 - attendance.

Georgia Tech

Reality Check (2)

Do's

- follow instructions
- be in class on time
- be in studio on time
- pay attention
- use the tools that are presented
- read the book
- give professional presentations
- act professionally
- follow procedures (safety)
- clean-up in studio
- report damaged equipment

❖ Don't's

- miss class
- turn in hand written reports
- give hand written presentations
- close your minds to the alternatives
- sleep in class
- bring food into studio
- leave a mess in studio.

Your Grade

Studio Preparedness	10%		
Homework	15%		
Class Participation	5%		
Structure Lab	5%		
Introductory Project	10%		
Major Project	55%		
Planning Report and Presentation (5%)		(5%)	
Evaluation Report and Presentation (5		(5%)	
Machine Performance		(15%)	
Presentation to Judges ((5%)	
Final Oral Presentation (10%)		(10%)	
Final Report		(15%)	
Give at least one oral presentation			P/F
Electronics, machining, and pneumatics training			P/F

Georgia Tech

Attendance

- You must attend all studios
 - attendance will be taken
 - missing a studio results in a 0 for that studio grade
 - missing a studio assignment results in a letter grade reduction
- You must attend all lectures
 - attendance will be taken at 3:00 PM
 - being late (arriving between 3:00 and 3:10) is 0.5 of a missing lectures
 - we will be using a seating chart
 - there are 20 lectures
 - missing lectures (rounded down) will result in a final grade penalty
 - 2-3 missed lectures = 1 letter grade reduction
 - 4-5 missed lectures = 2 letter grade reduction
 - 6-7 missed lectures = 3 letter grade reduction
 - 8-9 missed lectures = 4 letter grade reduction.

Studio – Be Prepared

- Review appropriate lecture material
- Review appropriate studio material
- Engage in studio
- Your studio instructor is grading you
- Studio Preparedness = 10% of your grade
- Class Participation = 5% of your grade

Science and Engineering

- Scientific Method
 - Theory corrected by experiment.
- Engineering Method
 - Ordered sequence descripting the morphology of engineering design
 - Ordered sequence in descriptions of engineering problem solving.
 - Application of scientific principles to solve problems.
 - Incorporates the use of
 - engineering heuristics
 - heuristic reasoning
 - within the context of a
 - logical, ordered, and systematic procedure
 - plan for solving engineering problems effectively and efficiently.

Engineering

- Engineering Method
 - Strategy for causing the best change in a poorly understood or uncertain situation with the available resources and using heuristics
 - (Heuristics are anything that provides a plausible aid or direction in the solution of a problem, but is, in the final analysis, unjustified, incapable of justification and fallible; a.k.a.; engineering concept, rule of thumb, safety factors, orders of magnitude)
- Engineering is the process of manipulating nature to benefit society
 - Manipulating is decision making, not problem solving.

Characteristics of Design

- Multi-stage hierarchical decomposition
- Large quantities of data modularized
- Support design tools analysis, optimization, simulation, etc. in various design phases
- Uncertain design path
- Alternatives, revisions, versions
- Iterative and cyclic
- Teamwork interactions between designers
- Multidisciplinary
- Dynamic.

Questions to Ask When Designing

- Where can I sell my product?
 - What products do my customers need?
- How can I improve my product?
 - What customer needs are not being met?
- When will my product become obsolete or inappropriate?
 - How are changes in technology affecting the marketplace?

Critical Information

- Studios (labs) are being held this week
 - Read the studio handout posted on the ME 2110 web site
- Do not miss your studio section
- Competition date 9 November 5 PM
- Final reports / presentations the week of 12 November
- Thanksgiving, 22 November

Georgia Tech

Some Advice

- Understand the world
- Get to know your TA and instructor
- Know where you are going
- Learn your material, it is valuable (\$\$\$)
- Learn to tell your story, this course will land you a job
- You learn more from failure than from success
 - Fail often
 - Understand your failure mode
- Prototypes
 - Build
 - -Run
 - Fatigue